The additive structure of integer groups and $p$-adic number fields
نویسندگان
چکیده
منابع مشابه
Additive Complexity and Roots of Polynomials Over Number Fields and p-adic Fields
Consider any nonzero univariate polynomial with rational coefficients, presented as an elementary algebraic expression (using only integer exponents). Letting σ(f) denotes the additive complexity of f , we show that the number of rational roots of f is no more than 15 + σ(f)(24.01)σ(f)!. This provides a sharper arithmetic analogue of earlier results of Dima Grigoriev and Jean-Jacques Risler, wh...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولMODULAR SYMBOLS FOR REDUCTIVE GROUPS AND p-ADIC RANKIN-SELBERG CONVOLUTIONS OVER NUMBER FIELDS
We give a construction of a wide class of modular symbols attached to reductive groups. As an application we construct a p-adic distribution interpolating the special values of the twisted Rankin-Selberg L-function attached to cuspidal automorphic representations π and σ of GLn and GLn−1 over a number field k. If π and σ are ordinary at p, our distribution is bounded and gives rise to a p-adic ...
متن کاملOn the p-adic Beilinson conjecture for number fields
We formulate a conjectural p-adic analogue of Borel’s theorem relating regulators for higher K-groups of number fields to special values of the corresponding ζ-functions, using syntomic regulators and p-adic L-functions. We also formulate a corresponding conjecture for Artin motives, and state a conjecture about the precise relation between the p-adic and classical situations. Parts of the conj...
متن کاملHecke Algebras of Classical Groups over p-adic Fields II
In the previous part of this paper, we constructed a large family of Hecke algebras on some classical groups G de¢ned over p-adic ¢elds in order to understand their admissible representations. EachHecke algebra is associated to a pair JS; rSof an open compact subgroup JS and its irreducible representation rSwhich is constructed fromgiven dataS G;P0 0; R. Here, G is a semisimple element in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1968
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1968-0230836-3